Clothero
eCommerce
CSS
Clothero
-
<ul dir="auto"> <li> AI-based shopping assistance for both man and woman using transfer learning and statistics like Cosine and Pearson similarity metrics. The basic idea behind the project is passing image data through a Pre-trained model [Mobilenet_v2] for extracting feature vector which is flattened out in the end. The output from this goes through a comparison metric called cosine similarity metric which is computed between users choice of cloth and the database vectors, scrapped from amazon.in </li> </ul>
-
<ol dir="auto"> <li> Transfer Learning<br /> here we have used pre-trained model for feature extractor ,particularly </li> <li> Statistics<br /> Basic knowledge about similarity metrics like Cosine , Pearson </li> <li> Web-scrapping<br /> using webscraping various shopping sites for data for building the prototype using scrapy </li> <li> Web-technologies<br /> Baiscs of CSS, HTML, JAVASCRIPT , Flask ,JQuery </li> <li> Database<br /> No-sql database like Mongodb </li> </ol>
-
<ol dir="auto"> <li> Python3 <ul dir="auto"> <li> numpy </li> <li> tensorflow </li> <li> pandas </li> <li> pymongo </li> <li> scrapy </li> <li> math </li> </ul> </li> <li> Databse <ul dir="auto"> <li> Mongodb </li> </ul> </li> <li> Backend <ul dir="auto"> <li> Flask </li> </ul> </li> <li> Front <ul dir="auto"> <li> CSS </li> <li> HTML </li> <li> JAVASCRIPT </li> <li> JQuery </li> </ul> </li> </ol>
-
<ol dir="auto"> <li> Clone the repository </li> <li> Install mongodb </li> <li> Preprocess data i.e create vectors of images path with the help of <code>Clothero.ipynb</code> in the root directory and sample data csv for preprocessing can be found in <code>img-databse</code> folder. </li> <li> Import processed csv file in your mongodb database </li> <li> Install the requirements</p> <ul dir="auto"> <li> for Windows users</p> <blockquote> <p> pip install -r requirements.txt </p> </blockquote> </li> <li> for Ubuntu users</p> <blockquote> <p> pip3 install -r requirements.txt </p> </blockquote> </li> </ul> </li> <li> Start the server<br /> <code>cd server</code><br /> <code>flask run</code> </li> </ol>
-